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2.9 Million Daily Spectra

AIRS Channels for Tropical Atmosphrere with T_surf T=301K

Full Spectrum
310.00 4
o, o, H,0
R o 24 3
300.00 M
290 .00 I
28000 . P a ! T
g 27000 !
!. .
§ 260,00 4 | b |
25000
2 3
24000 { M
‘ ! I‘&
230.00 ﬁ
| LAR!
220,00 i N0
210.00
800 800 1000 1200 1400 1600 1800 2000 2200 2400

August 2000 AIRS frequencies




National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Greenhouse Gas Forcing

AIRS Key Products

Clouds and Water Vapor Feedback

Atmospheric Temperature Cloud Properties

Ozone

Atmospheric Water Vapor
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Many published AIRS studies
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Pasadena, California An order Of magnitUde more talks

Over 631 AIRS Peer Reviewed Publications Through Oct 2013
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Closer to pure observations than reanalyses

— Heed Graeme Stephens’ comments yesterday about
reanalyses.

 High infrared spectral resolution and coverage
=> highest vertical resolution from the IR.

 Information about temperature and water vapor profiles,
trace gases, etc. obtained simultaneously

— Especially important for water vapor-lapse rate feedbacks.

« Global coverage.

* 11+ years of data (10 billion spectra, 1 billion retrievals).
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* In cloudy scenes most information is obtained in the
microwave

= Lower vertical resolution than IR.

 Global coverage.

» 11+ years of data (10 billion spectra, 1 billion retrievals).
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e Examine:

— Ways to distinguish tropics and extratropics.
* Use a potential temperature threshold

— Driest scenes in the tropics
e Because AIRS can distinguish profiles there easily.

— Develop metrics for long-term variability
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. Important cloud-related feedbacks occur in the dry
subtropics

— Fasullo & Trenberth, 2012, A Less Cloudy Future: The Role of
Subtropical Subsidence in Climate Sensitivity, Science.

— We (arguably) have the best data set of temperature and water
vapor in the dry subtropics.
« The tropics are known to be expanding because of
warming. For example:

— Davis, N. A., and T. Birner (2013), Seasonal to multidecadal
variability of the width of the tropical belt, J. Geophys.Res. Atmos.,
118, 7773-7787, doi:10.1002/jgrd.50610.
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“The bulk stability is defined here as the total difference in potential temperature
between the tropopause and the surface and represents a simple measure of
stability within a layer irrespective of thickness, as opposed to static stability
which measures the local stratification.’

-- Davis & Birner 1999 zonal-mean tropospheric dry bulk stability
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Potential Temperature > 310 K
6 Sep 2002

2002.09.06 POTENTIAL TEMPERATURE, P = 400 MB, ASCENDING NODE
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6 Sep 2002

-Extremely demanding quality control (<100% yield for 1x1° boxes in black).
-310 K potential temp. in bold blue.
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A ‘Tropical’ Conditions

January 2003

Occurrence Frequency, 68 > 310 K at 400 hPa
Contours are 20, 40, 60, 80, 0%

Occurrence Frequency,
Relative Humidity < 20% at 400 hPa
(NOT mean RH)
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July 2013

e o D€fINING “Tropical’ Conditions Dynamically

2013/07: RH <20% Occurence Frequency (P

ercent), Theta >310 K, , P = 400 hPa

Occurrence Frequency, 68 > 310 K at 400 hPa

Relative Humidity < 20% at 400 hPa

Occurrence Frequency,

(NOT mean RH)
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w00 WPa: Occurrence Frequency Weighted Area
6 > 310 K (thick)
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RH < 20%

(thin)

Their difference (dashed)

Area of Theta >310K (Thick) AND RH <20% (Thin); Difference (Dashed)
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 AIRS has most profile information in the dry subtropics, where
climate processes may be driving climate sensitivity. See:
— Fasullo and Trenberth, 2013, Science.
— Sherwood et al., 2014, Nature.

 With 11 years of observations, AIRS likely contains useful

climate indices (like relative humidity quantities) in the dry
tropics and subtropics.

— Today’s study is a preliminary attempt at creating one index.
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Derive some global metrics (including height) to distinguish
tropics from subtropics.

Propagate errors along with summaries (like means).

Create clearer hypotheses of how they may be varying
— E. g. tropical expansion

Look at those quantities over nearly 12 years of observations.
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